Machine Learning – The Data Science Used by Computers to Learn From Data

As per dictionary Learning means gain knowledge, understand the things. Zoologists and psychologists are doing learning in animals and humans species. Here we can discuss about learning in machines namely computer machines.

As human beings, we have capability to read, watch, understand and make decisions. What if we can add this capability to machine so that they can take decision by processing large amount of data? We will provide such capability to machine through algorithm which we called as Machine Learning.

What is Machine Learning, as per Arthur Samuel way back in 1959: “[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.” Machine Learning is an algorithm or program that read data, analyse it, identify the pattern and base on analysis it will perform operations, it will change rest of its flow, it will do suggestions & recommendations.

We tell machine to learn, it learns from its past decisions, from its past data which it has analysed & processed. Machine Learning predict result base on its statistical analysis In simple word, it means you need to write program to predict, it will predict base upon patterns identified in data.

We require algorithm for online product recommendation, search engine, new feeds result, traffic guidance etc. All these activities involve large amount data need to be processed in order to take decision. Machine learning help in this scenario, they take large amount of data, learn from its example, take decision and respond back to variety of inputs.

It is very helpful in customer facing business like online store; it helps to predict business growth using historical data and identify potential future, growth, trends in market.

Machine Learning always gave competitive edge to businesses. An amount of data business has generating per day, amount of data need to access and process but if we have Machine Learning then processing this information and identifying pattern become much faster so it helps business to do things better.

Machine Learning: Algorithms Types

Machine learning algorithms are organized as:

  1. Supervised learning: where the algorithm generates a function that maps inputs to desired outputs.
  2. Unsupervised learning: which models a set of inputs: labeled examples are not available.
  3. Reinforcement learning: where the algorithm learns a policy of how to act given an observation of the world.
  4. Semi-supervised learning which combines both labeled and unlabeled examples to generate an appropriate function or classifier.

Machine Learning Examples
ml
Below are few examples where we can use machine learning technique.

  1. Email spam detection: When we have thousands of emails in inbox and need to identify which mails are spam and which or not, based on our decision we need move spam mails to spam folder
  2. Credit card fraud detection: Based upon transaction made by customer we need to identify which transaction genuine and which or fraud so we will refund the customer
  3. Digit recognition: This is useful in post office to sort letters/envelope base on its postal code
  4. Product recommendation: Base on purchase order history of customer, products information page which customer is regularly visiting and identifying customer’s watcher list, a program can recommend the product and motivate customer to purchase it.
  5. Medical diagnosis: Base on patient’s symptoms, previous record it will predict which illness patient does have.
  6. Stock trading: Based on current and past value of shares it predicts share’s movement and suggest share holder to buy or sell the share. It is useful for financial analyst.

Real life examples:
Problem:
Decide whether to wait for a coffee machine, based on the following attributes:

  1. Alternate: is there an alternative coffee machine?
  2. Is today Friday or Saturday?
  3. Hungry: are we hungry?
  4. Number of people waiting near coffee machine
  5. Price: price range
  6. Which flavor available
  7. Quantity of coffee?
  8. Do we have any complementary item with coffee?
  9. Estimated waiting time (0-10, 10-30, 30-60, >60)

Based on these attributes we can take decision whether to wait for coffee or not More the data we have, decision will be nicer. We are adding intelligent to algorithm so based on data it will predict properly.

[Tweet “#MachineLearning – The Data Science Used by Computers to Learn Drom Data ~ via @CalsoftInc”]

 
Share:

Related Posts

Revolutionizing the Impact of Gen AI in Data Centers and Network Infrastructure

Revolutionizing the Impact of Gen AI in Data Centers and Network Infrastructure

The advent of Generation AI (Gen AI) is changing the model of data centers and network infrastructure, indicating a new era of efficiency, scalability, and intelligence. Gen AI, representing the integration of AI into systems, is revamping how data is processed, analyzed, and managed within these critical environments. Network infrastructure benefits from self-optimizing capabilities, guaranteeing optimal performance and security. Read the blog to explore the impact of Gen AI in the datacenter infrastructure management.

Share:
Telecom Technology Trends 2024: Navigating the Evolution

Telecom Technology Trends 2024: Navigating the Evolution

The telecom industry is witnessing a rapid network transformation, enabled by a wide range of pioneering technology trends. The industry is gearing up for constant innovation in the coming year 2024. The digital disruption with technologies like 5G, IoT, and AI set the pace for modern market trends and business development in 2024. Read the blog to explore the major technology trends driving competitive and innovative business strategies in the telecom industry.

Share:
Retail Transformation

Revolutionizing Retail: The Top 7 GenAI Use Cases Transforming the Industry

The revolutionary applications of Generative Artificial Intelligence (GenAI) are enhancing the retail landscape. GenAI can ensure supreme end-user experience through pioneering applications such as personalized recommendations, virtual shopping assistants, supply chain optimization, and dynamic pricing strategies. This enhances targeted marketing strategies, enabling businesses to raise efficiency and innovation in a progressively competitive market. Read the blog to understand the transformative use cases that redefine how businesses drive the retail industry in the future.

Share:
Technology Trends 2024

Technology Trends 2024- The CXO perspective

In the rapidly evolving landscape of 2024, technology trends are reshaping industries and redefining business strategies. From the C-suite perspective, executives are navigating a dynamic environment where artificial intelligence, augmented reality, and blockchain are not just buzzwords but integral components of transformative business models. The Chief Experience Officers (CXOs) are at the forefront, leveraging cutting-edge technologies to enhance customer experiences, streamline operations, and drive innovation. This blog delves into the strategic insights and perspectives of CXOs as they navigate the ever-changing tech terrain, exploring how these leaders are shaping the future of their organizations in the era of 2024’s technological evolution.

Share:
Technology Trends 2024

The Winds of Technology Blowing into 2024

As 2023 draws to a close, the digital landscape is poised for a seismic shift in 2024. Generative Artificial Intelligence (Gen AI) continues its integrative streak, disrupting industries from B2B to healthcare. Networking trends emphasize simplicity, while the synergy of cloud and edge computing with Gen AI promises real-time workflows. Quantum computing, cybersecurity, intelligent automation, and sustainable technology are key players, reshaping the technological fabric. Join us as we navigate the transformative currents of 2024, unraveling the impact on enterprises in our forthcoming article. Stay tuned for the tech evolution ahead!

Share:
Gen AI blog banner

[Infoblog] Generative AI Shaping Future Industries

Generative AI is at the forefront of innovation, harnessing the power of machine learning algorithms to create new and original content, from images and music to entire virtual environments. This infographic depicts how Gen AI is evolving industries and shaping its future.

Share: