Securing Docker Containers

Docker is a great technology which simplifies the development and deployment of distributed applications. While building dockerized applications, security at various points needs to be considered. Due to lack of CPU/Hypervisor, Docker security is fully implemented in Software.

A Docker container in a nutshell has the following:-

  • Kernel shared with host.
  • Linux namespaces provide the isolation with respect to Processes (pid), IPC (ipc), Storage (mnt), Network (net), User (usr).
  • Linux Cgroups provide resource limiting and accounting in terms of CPU, Memory and IO bandwidth etc.
  • Unique file system (rootfs) which is isolated from host and managed by Docker as layers. As an example: /etc/resolv.conf in a container would be totally unrelated and orthogonal to /etc/resolv.conf on the Docker host.
  • All the libraries and configuration files needed for container application binaries are self-contained in the container file system.

Let us look at all prominent security aspects of kernel and container applications followed by generic aspects.

  1. Kernel Hardening:-
  • Docker containers share the kernel with the host on which they are running. So, security should be applied on the host kernel so as to secure the container kernel. The running kernel should have CONFIG_SECURITY_SELINUX enabled and SELinux should be enabled in enforced mode.
  • Another option is to use secure computing (seccomp). It is a mechanism to block the system calls at kernel level. Docker versions beyond 1.10 support default seccomp profiles where default.json file has the list of system calls which are allowed to run inside the kernel. Based on the application which is going to run inside the container, we should find the list of system calls being called by the application and allow the kernel to expose only those system calls. List of system calls made by the application can be gathered using strace command. Based on the list, we should create another profile file in json format and start the container using that profile file.
e.g. docker run --rm -it --security-opt seccomp=custom_profile.json custom_app
  1. Application capabilities:-

Docker provides the default security using concept of capabilities. Capabilities are like privileges which can be added or dropped. Containers run with limited set of capabilities. So, even if someone breaks into the container, the host system is not fully compromised. A simple Docker container running /bin/bash application has following capabilities. Either getpcaps (from libcap) or pscap (provided by libcap-ng-utils) shows the list of capabilities owned by a process.

[root@localhost ~]# docker run -i -t centos_cap /bin/bash

# <strong>1 is pid of bash inside container</strong>.

[root@1bd42416b6d2 /]# getpcaps 1

Capabilities for `1′: =

cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+eip
[root@1bd42416b6d2 /]# pscap -a

ppid  pid   name        command           capabilities
 
0     1     root        bash              chown, dac_override, fowner, fsetid, kill, setgid, setuid, setpcap, net_bind_service, net_raw, sys_chroot, mknod, audit_write, setfcap

So, there are multiple capabilities associated with an application by default. Application developer should find the capabilities required by the application and drop all other capabilities. Simple Docker option is to drop all the capabilities and add the required once while starting the Docker container. See example:-

e.g. docker run --rm -it –-cap-drop=ALL –cap-add=NET_BIND_SERVICE custom_app
  1. More security aspects:-
  • Docker developments start with Docker images which are downloaded from Docker hub. It is recommended to get an image from trusted source and enhance the security aspects. Production deployments should not reply on generic OS specific distribution images.
  • An application launched inside Docker container runs with root user privileges unless the UID is modified with –u option. So, it is advised to use “–u” option for Docker run command.
  • Never run any Docker application as root user. Use user namespaces inside Docker containers. This is because the data volumes written by the user running inside the container should be accessible to out of the container. Think of a container running Database application.
  • In case a service like SSH server needs to be run as root, run it inside a bastion host or a VM in as an isolated service.
  • Linux exposes hardware devices via /dev file system. The /dev filesystem, “devices” control group should be fine-tuned inside the Docker image based on the application requirement. /proc and /sys file systems are already locked by Docker, so there is no problem.
  • Do not run applications with SUID binaries inside containers, use capabilities instead.
  • Check for implications, before exposing network ports from Docker containers. In case, port needs to be blocked at runtime, iptables rules can be used at host level.
  • There are various options for resource limiting while spawning a container. These options are parameters passed to docker run command.
    • docker run –-memory-swap=400M custom_app.   # Runs container with swap memory limit of 400M
    • docker run –-cpuset=0 custom_app.           # Runs container which runs only on logical CPU0.

Following such guidelines makes Docker containers to run in relatively safe environments. This effectively enhances the application security which is less likely to get cracked.

[Tweet “Securing #Docker #Containers ~ via @CalsoftInc”]

 
Share:

Related Posts

The Role of NFV in 5G Networks: Opportunities and Benefits for Telecom Providers

With 5G networks on the rise, Network Function Virtualization (NFV) has become an important part of the telecom industry. NFV enables telecom providers to reduce the cost and complexity of their networks by providing a virtualized environment for network functions. This blog will explore the role of NFV in 5G networks, the opportunities and benefits that it offers to telecom providers, and how they can use NFV to improve their networks.

Share:

Leveraging AWS for Real-Time Fault Detection in the Manufacturing Industry

With the increasing complexity of the manufacturing industry, it is essential to adopt advanced technologies such as AWS cloud computing and machine learning to detect faults in real-time. This blog will discuss how to leverage AWS for real-time fault detection in the manufacturing industry, and the various benefits of this technology.

Share:

Leveraging AWS Local Zone for Deploying 5G Network Functions

As 5G networks become increasingly important for businesses and consumers, organizations are looking for ways to deploy 5G network functions quickly and cost-effectively. AWS Local Zone is one of the most promising solutions for this, providing low-latency access to services and data while reducing costs and improving performance. In this blog, we’ll explore how AWS Local Zone can be leveraged to deploy 5G network functions in an efficient and cost-effective manner.

Share:

MWC 23 Top Technology Trends

Mobile World Congress (MWC) is the one of the greatest and most influential connectivity events in the mobile industry where mobile device manufacturers, technology providers, and other industry stakeholders come together to showcase their latest products, services, and innovations. MWC 23 was held in Barcelona from 27 February to 2 March 2023. The event highlighted several emerging technologies and latest trends in the industry market. Read the blog to discover the top technology trends at MWC 23 and how these trends grow over the coming years!

Share:

Significance of AI to Underpin the Metaverse

The term “Metaverse” generally refers to a hypothetical future version of the internet that would be much more immersive and interactive, resembling a virtual world. Artificial intelligence (AI) is likely to play a major role in the development of the metaverse. AI could be used to create more realistic virtual environments in the future. Explore the blog to understand how can AI shape the Metaverse technology.

Share:

The 5G Uprising: Influence on Business and Telco Industry

The impact of 5G on the telecom industry is likely to be substantial and transformative, leading to new growth opportunities, increased efficiency, and improved customer experiences. Explore the blog to understand how 5G will transform business and the telecom industry.

Share:

This Post Has 2 Comments

Leave a comment / Query / Feedback

Your email address will not be published. Required fields are marked *