DPDK in 3 Minutes or Less…

First, there were specialized hardware – Gateways, Routers, Switches and Firewalls. People used hard manual labour to move them from one place to another ie: from a manufacturer to their data center.

There used to be updates to firmware every now and then, for patching vulnerabilities. New H/w was always at the “receiving gate” of the data center, ready to be deployed. This used to take all of the network administrator’s day time, and of course, night time used to be reserved for usual network issues and emergencies. Thus a network administrator was the best performing employee of the company, every single month. These devices were fast, so end users were also happy!

Then there was an idea to load the network functionality from these vendor specific locked-in architecture devices on to a COTS (commercial off the shelf) server, which you can buy on amazon. That solved the problem partially – the upfront costs of buying network gear. It also provided good scalability in terms of upscaling the H/w as and when needed, resulting in increased capacity for new requests. Overall costs were reduced for both the IT department and CEOs were happy to show better profit margins. However, the end users were not happy, as they found their requests for network resources were taking longer.

Traditionally, hardware which were RISC based computing systems, with the firmware tailored to operate on them, was very efficient, and the operations were fast! COTS based systems ran known flavors of Linux OS, and network functionality provided by software applications running on them. Every operation needed to be performed on network packets, had to be routed and tracked through entire OS(kernel) and Application(userspace) stack. This is red-tapism in the software world, every agency taking its sweet time for decision making. Following every rule and regulation in the book, serving everything but the purpose it was supposed to be there for.

DPDK (Data Plane Development Kit) came along. It said, “from today on wards there is going to be just one agency, itself, following just one rule book, a dpdk library“, irrespective of what the requestor’s end goal is.

All packets, needing network functionality processing (again, it means routing, switching, firewall allow/deny etc), had to be routed through it, and it would green-channelize them all. It would not call upon the kernel actions for processing these requests, and hence no system called. It promised to accelerate the network functions by a large margin. And it did!

How was it done? It is but logical, that if most things could be processed within userspace, network packets could be spared of, bottlenecks within Linux OS kernel stack. There had to be large changes to how a network card could be called upon to do any work.

  • First they had be freed of kernel’s absolute control over it.
  • A user mode driver, part of dpdk was brought in.
  • A userspace memory buffer was enabled so that all the ‘in-process’ data used by dpdk could be stored.
  • An interface, EAL, ‘Environment Abstraction Layer’ was created for Applications (switches, routers, firewalls etc.) to talk to dpdk.

Advantages of DPDK include everything that comes out of software based network function deployments (low cost of ownership, scalability, upgrade considerations etc) + a huge performance boost.

A solution that I have seen very recently, piqued my interest to investigate and write about DPDK. This particular case relates to an implementation of a virtual router:

NFV: Virtual router based on DPDK: Here performance boost recorded was whopping 3x the Linux only implementation. This was tested by using DPDK-pktgen to generate a 64 bit UDP packets using random source and destination IPs, with 4, Rx queues.

If you want to know more how these nitty gritties were handled, connect with us.

[Tweet “DPDK in 3 minutes or Less… ~ via @CalsoftInc”]

 
Share:

Related Posts

The Role of NFV in 5G Networks: Opportunities and Benefits for Telecom Providers

With 5G networks on the rise, Network Function Virtualization (NFV) has become an important part of the telecom industry. NFV enables telecom providers to reduce the cost and complexity of their networks by providing a virtualized environment for network functions. This blog will explore the role of NFV in 5G networks, the opportunities and benefits that it offers to telecom providers, and how they can use NFV to improve their networks.

Share:

Leveraging AWS for Real-Time Fault Detection in the Manufacturing Industry

With the increasing complexity of the manufacturing industry, it is essential to adopt advanced technologies such as AWS cloud computing and machine learning to detect faults in real-time. This blog will discuss how to leverage AWS for real-time fault detection in the manufacturing industry, and the various benefits of this technology.

Share:

Leveraging AWS Local Zone for Deploying 5G Network Functions

As 5G networks become increasingly important for businesses and consumers, organizations are looking for ways to deploy 5G network functions quickly and cost-effectively. AWS Local Zone is one of the most promising solutions for this, providing low-latency access to services and data while reducing costs and improving performance. In this blog, we’ll explore how AWS Local Zone can be leveraged to deploy 5G network functions in an efficient and cost-effective manner.

Share:

MWC 23 Top Technology Trends

Mobile World Congress (MWC) is the one of the greatest and most influential connectivity events in the mobile industry where mobile device manufacturers, technology providers, and other industry stakeholders come together to showcase their latest products, services, and innovations. MWC 23 was held in Barcelona from 27 February to 2 March 2023. The event highlighted several emerging technologies and latest trends in the industry market. Read the blog to discover the top technology trends at MWC 23 and how these trends grow over the coming years!

Share:

Significance of AI to Underpin the Metaverse

The term “Metaverse” generally refers to a hypothetical future version of the internet that would be much more immersive and interactive, resembling a virtual world. Artificial intelligence (AI) is likely to play a major role in the development of the metaverse. AI could be used to create more realistic virtual environments in the future. Explore the blog to understand how can AI shape the Metaverse technology.

Share:

The 5G Uprising: Influence on Business and Telco Industry

The impact of 5G on the telecom industry is likely to be substantial and transformative, leading to new growth opportunities, increased efficiency, and improved customer experiences. Explore the blog to understand how 5G will transform business and the telecom industry.

Share:

This Post Has 4 Comments

  1. Although, author has provided good enough pictures on the topic but I guess a little more explanation is needed.

  2. i had a basic question on implementing a software-based Switch/Router function (L2/L3 based). Normal switch/routers from the likes of Cisco/Juniper have N physical ports. So for a NFV-implemented router will we be using N NIC ports?

    1. For an NFV implemented routers, physical NICs only receive and transmit (ingress & egress) the packets meant for processing. As such all such NICs would be part of NFV solution. The point to note here is, it is not enough to just have multiple NICs under NFV solution, it must also accompany processing capabilities. Typically this is achieved by setting processor core affinity to process packets for that NIC. E.g. 4 NIC NFV router should have a CPU with 4+ cores. Each core for dedicated processing of traffic on each NIC.

      Thank you!
      Mandar Shukla

Leave a comment / Query / Feedback

Your email address will not be published. Required fields are marked *