Evolution Of Data Centers

To understand what a datacenter is, first let us recall what a computer is. A computer consists of three major components—CPU (computation), Memory (RAM) and Disk (storage). Similarly, a datacenter used to have three discrete and interconnected components—Servers (for compute), Storage Array (for storage), and Network Switches (for connectivity). These components evolved in time and thus contributed to the evolution of datacenters.

Datacenter Components

Server

The most important part of a server/computer is its processor. The evolution of CPU/processors happened over its number of COREs (logical processor) to represent a physical processor. From single core, dual core, to multi core—that is the journey of processors.

Storage

Storage evolved from a 1.4 MB Floppy (as I know), 700 MB CD to 2 TB USB, and 30 TB SSDs. The protocols to connect to these storages started from IDE, SCSI, SAS to SATA, PATA to today’s NVMe.

Networking

Networking evolved from 10 MBPS to today’s 100 GBPS. The devices changed from hubs, switches to routers, firewalls, and so on. The topologies evolved from LAN to WiFi and WAN.

Virtualization

All these discrete components were playing their vital roles and then came the era of virtualization. In virtualization, the physical components were divided into logical ones and then represented to an application as multiple physical components.

All the building blocks (hardware, kernel, user space) of a computer were virtualized as hardware virtualization, memory virtualization, software virtualization, network virtualization, application virtualization, storage virtualization, and so on. With virtualization, things that were seemingly impossible earlier became possible.

A single computer can play multiple operating systems. All operating systems boot at the same time as a virtual machine. All virtual machines run as an application on a single kernel called hypervisor. A set of virtual machines forms a cluster to serve a single service or application. A single storage disk shared across multiple servers forms a storage cluster.

Converged Infrastructure:

The idea of component virtualization, their integration, and management gave rise to a term called Converged Infrastructure OR CI. In CI, the various components are grouped together to form a single CI-Node. Datacenter administrators get a single management utility/interface to manage all the components of CI. This discrete component management via a single interface allowed CI to serve features such as scale out, scale up, high availability, and so on.

Hyper-Converged Infrastructure:

Then came the era of software-defined components. Software-defined network, software-defined storage, software-defined compute, which then formed software-defined infrastructure. The term “software-defined” implies that the services expected out of physical devices were getting programmed and performed through a piece(s) of code running on a single node. This reduced the need of discrete components and gave rise to a term called Hyper Converged Infrastructure or HCI.

In HCI, all the programs of discrete components are clubbed together to form a single HCI-Node. As the components are software-defined and integrated together in a node, managing them through an external interface is easy. What is difficult is achieving feasibility of scale out and scale up.

In a nutshell, the clubbing of individual components of a datacenter to form a single node is called converged infrastructure. Clubbing of software-defined components to form a node is called HCI.

The next era will be of hybrid infrastructure which will be a mash-up of hardware-based and software-based components.

 

 
Share:

Related Posts

Generative AI: Transforming Industries for Success

Generative AI : Transforming Industries for Success

Generative AI is the hot topic of discussion everywhere and is being embraced by everyone. Read this blog to explore how different sectors are leveraging Generative AI to drive innovation, enhance efficiency, and deliver superior experiences.

Share:
Private 5G Promising Industry 4.0 Transformation blog

Private 5G: Promising Industry 4.0 Transformation

The potential of Private 5G in ensuring super connectivity and higher data rates in Industry 4.0 is achieving traction worldwide. Private 5G together with other key emerging technologies such as Artificial Intelligence (AI), automation, and Internet of Things (IoT) support operators to generate innovative revenue streams. These advancements make Private 5G an apt choice for all types of enterprise ecosystem (big/small/mid-sized) to realize digital transformation. Read the latest blog to know what, why, and how Private 5G is fueling Industry 4.0.

Share:
Potential of 5G in Manufacturing and Industrial Automation

Potential of 5G in Manufacturing and Industrial Automation

Manufacturing industries are probing for novelties and modernization to gain better profitability and productivity. 5G technology with its key capabilities such as higher speed, greater availability, support for ultra-reliable and low-latency communication has potential to revolutionize the manufacturing industry. The technology promises to facilitate digital infrastructure to realize automated and advanced operations which will lead to an enhancement in business output. Read the latest blog to learn how 5G can impact and benefit manufacturing and industrial automation.

Share:

Edge-to-Cloud in Manufacturing

In the manufacturing industry, an Edge-to-Cloud strategy can bring a number of benefits and challenges. Read this blog to know all about it.

Share:

5G Network Slicing: A Gamechanger for Telcos

5G network slicing is a powerful tool that can help telcos differentiate themselves from their competitors by offering more tailored and customized services to their customers. It has the potential to be a gamechanger for telcos, and we can expect to see more and more telcos investing in this technology in the coming years. Read the latest blog to explore how 5G Slicing can be a gamechanger for the Telco Industry in the future.

Share:

MWC 23 Top Technology Trends

Mobile World Congress (MWC) is the one of the greatest and most influential connectivity events in the mobile industry where mobile device manufacturers, technology providers, and other industry stakeholders come together to showcase their latest products, services, and innovations. MWC 23 was held in Barcelona from 27 February to 2 March 2023. The event highlighted several emerging technologies and latest trends in the industry market. Read the blog to discover the top technology trends at MWC 23 and how these trends grow over the coming years!

Share:

Leave a comment / Query / Feedback

Your email address will not be published. Required fields are marked *